Appendix 6-3. Hydrogeological Report

Intended for daa PLC

Document type **Report**

Date August 2020

WEST APRON VEHICLE UNDERPASS HYDROGEOLOGICAL REPORT

WEST APRON VEHICLE UNDERPASS HYDROGEOLOGICAL REPORT

Project name	WEST APRON VEHICLE UNDERPASS
Project no.	1100040489
Recipient	daa pic
Document type	Report
Document no.	1100040489-SPE-REP-7000
Version	2.0
Date	07-08-2020
Prepared by	Daniel Porteous, Una Pétursdóttir
Checked by	Jes Michaelsen
Approved by	Ben North
Description	Review of existing hydrogeologic investigations and high-level assessment of required investigations during planning stage.

Ramboll Hannemanns Allé 53 DK-2300 Copenhagen S Denmark T +45 5161 1000 F +45 5161 1001 https://ramboll.com

Rambøll Danmark A/S DK reg.no. 35128417

CONTENTS

1.	Introduction	1
1.1	Project Overview	1
2.	Summary of Existing Hydrogeological Conditions	2
2.1	Introduction	2
2.2	Geological setting	2
2.3	Hydrogeological setting	3
2.4	Hydrological setting	4
3.	Groundwater Engineering Considerations	5
3.1	Groundwater Effects in the Operational Phase	5
3.2	Temporary Groundwater Control	5
4.	Groundwater Based Risks	7
5.	Hydrogeological Investigations	9
6.	Recommendations	11
Appendix	1	13
Appendix	2	14

Glossary

Term	Description
mOD	Metres above Ordinance Datum
mbgl	Metres below ground level
Transmissivity	The rate of flow under a unit hydraulic gradient through a unit width of
	aquifer of given saturated thickness. Unit: [L ² /T]
Screen	A well screen serves as the water intake of a well from an aquifer and
	prevents sediment from entering the well.
Storativity	The volume of water released from storage per unit surface area of the
	aquifer per unit decline in hydraulic head. Dimensionless.

1. INTRODUCTION

This note presents a review of the existing hydrogeological information, identifies risks, provides recommendations for site-specific groundwater investigations and proposed groundwater control methodology for the construction phase and the operational phase for the proposed cut and cover Airside Road Tunnel at Dublin Airport.

1.1 Project Overview

As part of the Capital Investment Programme 2020-24 (CIP2020), submitted and approved by the Commission of Aviation Regulation (CAR), a future airside road tunnel ("West Apron Vehicle Underpass") was included in the proposals to be completed by the end of 2024. The airside road tunnel is required to achieve a desired capacity of 40 million passengers per annum (mppa) by the end of 2024, and to safeguard growth to numbers up to 55 mppa, by unlocking the ability of the Airport to use existing stands on the West Apron, future stands to be developed on Apron 5M and subsequent developments of airfield and terminal/pier infrastructure in the west.

The CIP level alignment and general cross section are shown in Figures 1-1 and 1-2. It is noted that the CIP alignment is currently being updated, however the observations and recommendations from this note remain unchanged.

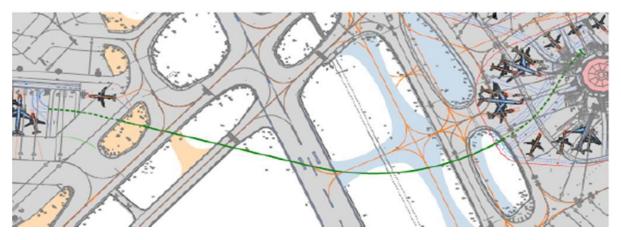
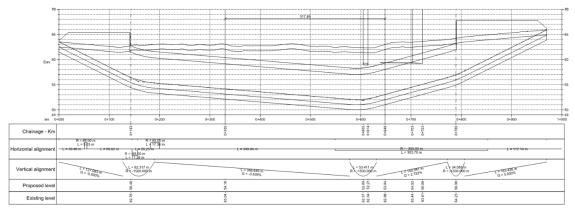



Figure 1-1: Plan view of proposed tunnel alignment to the West Apron (CIP design).

LONG PROFILE, CENTRAL TUNNEL RAPID ASSESSMENT, 1:2000

Figure 1-2:Cross section of proposed tunnel (Vehicle underpass, Pier 3 Cut and cover plan and profile, CIP20-03-TUN-CAP-VEH-03-01-0001).

2. SUMMARY OF EXISTING HYDROGEOLOGICAL CONDITIONS

2.1 Introduction

Information regarding the existing hydrogeological conditions has been sourced from various available ground investigation reports provided by daa in February 2020 and online resources. A brief summary of the available sources and hydrogeological information which they contain is included in Table 2-1.

Ref	Report title	Date	Author(s)	Hydrogeological Information
1	Geological Survey Ireland Spatial Resources (Online map viewer)	Accessed 25/02/2020	Geological Survey of Ireland	Site geology, aquifer characteristics, location of groundwater wells and springs.
2	EPA Maps (Online map viewer)	Accessed 25/02/2020	Environmental Protection Agency (Ireland)	Water features, local geology
3	Additional Airfield Boreholes-GIR	15/05/2018- 11/06/2018	Ground Investigations Ireland	Five boreholes (BH01, BH02, BH02A, BH03, BH04) are within close proximity (<100m) to the proposed tunnel route. Borehole log data is included in Appendix A.
4	New Air Traffic Control Tower	03/03/2009- 30/05/2009	Glover Site Investigations Ltd	Borehole records identifying groundwater levels off-site (0.5-1.2 km NW of site). Borehole log data is included in Appendix B.

Table 2-1: Summary of available sources.

2.2 Geological setting

Geological information is accessible through the Geological Survey of Ireland's (GSI) Spatial Resources viewer¹. The superficial geology underlying the area of the proposed corridor is anticipated to comprise the Lower Brown Dublin Boulder Clay (LBrBC), which is described as firm to very stiff sandy gravelly clay. Borehole logs from a prior 2018 Ground Investigation noted gravels, cobbles and sandy/gravelly lenses, which are typical of the LBrBC. The natural strata are understood to be overlain by Made Ground.

The underlying bedrock is the Tober Colleen Formation, which is described by the GSI as Calcareous shale, limestone conglomerate. According to the borehole logs, depth to bedrock becomes deeper from north to south (40.9 mOD (24.20 mbgl) to 33.57 mOD (26.70 mbgl)) and shallower from east to west (33.57 mOD (26.70 mbgl) to approximately 45.5 mOD (17.35 mbgl). Based upon these depths, the proposed tunnel is understood to be excavated within the superficial strata only.

¹ https://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2aaac3c228 [Accessed 25.02.2020]

Figure 2-1: Orthophoto of the proposed tunnel route with the approximate aquifer boundary. The markings for proposed borehole locations are from the technical note: 'Review of Existing Geotechnical Information', however an updated borehole location plan can be found in 'Specification for Ground Investigation').

2.3 Hydrogeological setting

Hydrogeological information was accessed through the GSI's Spatial Resources data viewer. The site is situated above the Dublin Urban WFD groundwater waterbody (Chemical status: 'Good', Quantity status: 'Good') which is described as poorly productive bedrock.

According to the GSI Spatial Resources data, the site is underlain by two aquifers separated by a bedrock aquifer fault beneath the approximate centre-west of the proposed tunnel (shown in Figure 2-1). The tunnel is understood to pass through the overlaying strata. The aquifer beneath the western portion is categorised as a Locally Important Aquifer, meaning bedrock which is moderately productive only in local zones. The aquifer beneath the eastern portion is categorised as a Poor Aquifer, meaning bedrock which is generally unproductive except for local zones. No locally or regionally important gravel aquifers, which are superficial and distinct from the bedrock aquifers, are identified as present based upon existing data and there are none within 1 km of the site.

Average groundwater recharge is stated to be 68 mm/yr and Subsoil permeability is believed to be low.

Groundwater levels and seasonal variations at the site are currently unknown. EPA groundwater contours suggest a groundwater level of 60 – 70 mOD in the area, and according to the prior ground investigations, the ground level within 100 m from the proposed tunnel route is approximately 62 – 64 mOD. However, the boreholes within 100 m from the proposed tunnel extended to 33.5 mbgl and did not identify a groundwater strike (see Appendix A for location plan and borehole logs). Six exploratory holes were drilled for the new air traffic control tower in May 2009 (~0.5 km NW of the western end of the proposed tunnel, ~1.2 km NW of eastern end of the tunnel, see Appendix B), where boreholes BH01 and BH02 struck groundwater at 60.1 mOD (5 mbgl) and 60.7 mOD (3.9 mbgl) respectively at the approximate height of the limestone bedrock in both boreholes. However, boreholes BH05 and BH06 encountered groundwater seepage only at 57.42 (7.5 mbgl) and 57.06

mOD (8.0 mbgl) respectively within the clay strata and did not record a groundwater strike within the limestone. This suggests a spatially variable local groundwater level. These boreholes seem, however, to have been constructed mainly for a geotechnical purpose and the reported groundwater strikes in BH01 and BH02 were only measured shortly after completion of the boreholes where it was observed that the groundwater level rose by 0.4-0.8 m during 20 minutes of measurements. It is difficult to assess whether the measured water levels represent the limestone or the clay layer above as there is no information on whether the boreholes were screened. It is also possible that the groundwater levels are in fact higher than those reported, judging from the rising groundwater levels during the measurements. However, the hydraulic conductivity of the clayey soil is expected to be low.

The proposed tunnel is expected to extend down to 48 mOD (Figure 1-2). Importantly, at the three boreholes nearest the proposed tunnel's deepest point (BH01, BH02A and BH04), the limestone basal rock layer is encountered at elevations ranging from 33.6-35.7 mOD (or 27.6-28.3 mbgl), or approximately 15 m beneath the base of the proposed tunnel. This places the limestone bedrock lower than at the air traffic control tower site where the abovementioned groundwater levels were measured. The height of the limestone recorded at BH03, close to the far-western end of the tunnel, was shallower at approximately 45.5 mOD (17.35 mbgl). However, BH03 is further from the deepest proposed excavation, and excavation in the vicinity of BH03 is not planned to exceed 55 mOD. Therefore, a clearance of approximately 10 m at minimum would be expected in this area based upon available data.

Additionally, borehole logs during a previous ground investigation identified sub-horizontal granular lenses within clay strata. These lenses could serve as permeable flow pathways for groundwater and localised areas of higher groundwater discharge. Should groundwater be present within the clay strata, it will most likely exist within these lenses.

A single bored groundwater well (GSI name 2923NEW034) is recorded in the area of the main airport terminal and carparking, within 1 km of the site, approximately 600 m from the proposed tunnel. Location accuracy of the borehole is stated to be within 500 m. Its use is industrial and has a recorded yield of 300 m³ per day.

2.4 Hydrological setting

The Cuckoo Stream is the only watercourse designated by the EPA within 1 km of the proposed tunnel. The Cuckoo Stream drains into the River Mayne approximately 5.5 km east of its headwaters at the airport. The majority of its channel within the airport is not visible in satellite imagery suggesting it is heavily culverted. There are no other water bodies, hydrologically sensitive or protected areas identified within a 1 km radius of the site. Hydrological information was accessed through the EPA's online data map service.²

² https://gis.epa.ie/EPAMaps/ [Accessed 25.02.2020]

3. GROUNDWATER ENGINEERING CONSIDERATIONS

3.1 Groundwater Effects in the Operational Phase

Groundwater lowering in the operational phase is not expected. The tunnel shall be designed to withstand worst case uplift pressures, but permanent groundwater control systems are not expected.

Surface water seeping into the granular backfill material around the tunnel will potentially result in a local water level as high as ground level immediately around the tunnel. This risk shall be considered in the design of the tunnel and airfield drainage.

3.2 Temporary Groundwater Control

It is anticipated that the groundwater levels reported 0.5-1.2 km NW from the planned tunnel are representative of the water pressure in the limestone bedrock. Assuming that the water pressure is the same in the limestone at the tunnel site, it is anticipated that depressurisation of groundwater in the limestone will be necessary for the construction of the tunnel to prevent hydraulic failure.

Based on the available information, it is proposed to design the groundwater lowering system with pumping wells established outside the excavation to temporarily reduce the hydraulic pressure of the limestone and prevent uplift. Therefore, it is recommended to investigate the piezometric level of the regional aquifer further to assess the stability of the excavation base. If the layers below the base of the excavation are not stable, and uplift is a concern, then the pumping wells should be drilled to a level where the pressure of the groundwater is in equilibrium with the weight of the deposits below the excavation.

Depending on the hydraulic parameters it may be necessary to establish injection wells to maintain the existing water table level and to prevent settlement of adjacent structures as well as mobilise nearby contaminated sites.

The distance between the pumping wells and the injection wells will be based on the hydrogeological investigations and the groundwater modelling results. The wells established for the groundwater investigations should be located and designed to be able to be used for the temporary groundwater lowering to reduce the cost of the groundwater control associated with the construction phase.

The length of the sections of open excavation will affect the total abstracted and injected volumes and the drawdown effects on the environment. The design should be prepared as part of the tunnel outline design and reviewed as a part of the detailed design, by either a specialist contractor or suitably-qualified consultant. It is recommended to prepare the detailed design of the groundwater lowering system once the design of the tunnel is more developed and the proposed hydrogeological investigations are completed.

The groundwater lowering system will generally consist of the following components; however investigation will be required to confirm these details:

Pumping wells

Pumping wells will be installed as close to the tunnel excavation as possible or inside the excavation if it is practical to a depth of approximately 10 m in the limestone. The wells should be drilled in 10" diameter to allow for the installation of 165 mm diameter PVC screens. Given the expected geological profile the wells should be screened over a large interval covering the underlying

limestone bedrock. The pumping wells should be fitted with submersible pumps and pressure transducers and connected to the SCADA system for remote control of the pumping rates.

Injection wells

If the proposed investigations indicate that injection is required, the injection wells are installed further away from the tunnel excavation between the alignment and existing structures and buildings to reduce the drawdown effects and prevent settlement of existing airfield infrastructure and buildings. The design of the injection wells will be similar to the pumping wells, except potentially with a smaller diameter. The well efficiency of injection wells is generally lower than for pumping wells which is why approximately 25% more injection wells than pumping wells should be expected.

Monitoring wells inside excavation

In order to ensure that the required drawdown inside the excavation is maintained but not exceeded, several monitoring wells will be installed inside the excavation. The monitoring wells will be drilled to accommodate up to two DN50 mm ID PVC piezometers installed to depths below the base of the tunnel. The piezometers should be fitted with pressure transducers and connected to the SCADA system.

Monitoring wells outside excavation

A number of monitoring wells of similar design as the monitoring wells inside the excavation will be installed at the perimeter of the tunnel excavation. The purpose of these monitoring wells is to ensure that minimum water levels under the existing infrastructure is not exceeded.

Supervisory Control And Data Acquisition (SCADA)

The pumping rates will be controlled remotely by a SCADA system based on the water levels recorded in the monitoring wells. All wells will be connected to the SCADA to optimise the pumping regimes and reduce the total abstracted volumes to a minimum.

Piping and manifolds

All pumping wells and injection wells will be connected through manifolds and a piping system. The piping system will primarily be located on the construction site but depending on the location of the injection wells piping is anticipated to extend beyond the construction site. It is proposed to operate the groundwater lowering system as a closed loop system to avoid aeration of the injected groundwater and thereby reduce development activities of the screens in the injection wells. In the case where the drawdown effects on the existing structures can be managed without injecting 100% of the abstracted groundwater, discharge to the nearby stream or sewer system will be required. This will likely require authority permission.

<u>Treatment</u>

It is expected that simple treatment such as sedimentation and aeration will be required before discharging to the nearby stream or sewer system. Treatment of the groundwater injected back to the aquifer is not expected to require treatment. However, the proposed investigations will allow for an assessment of the required treatment.

4. GROUNDWATER BASED RISKS

Due to the proposed tunnel intersecting two distinct aquifers, there is a possibility of creating a pathway for groundwater to travel between the two bodies. However, due to their limited productivity, and particularly that of the Poor Aquifer, the extent of this will likely be minimal during both temporary works and operation. This would not be anticipated to influence the Quantity status of the Dublin Urban WFD groundwater body as both aquifers are combined within the same WFD groundwater water body.

Potential dewatering and effects upon the well identified within the study area should be considered. Both an EPA-designated watercourse (Cuckoo Stream) and abstraction are within 1 km of the proposed tunnel. Due to the estimated distance and known geological factors, at this stage it is considered improbable that the well and watercourse would fall within the zone of dewatering; however, this may need to be demonstrated through analysis/calculation to fulfil regulatory requirements.

A register of the potential risks and risk control measures is shown in Table 4-1.

	Groundwater	Current	Description of current risk	Risk control measures
	hazard description	risk rating		
1	Groundwater ingress into excavation area (construction phase)	Low	Groundwater intrusion/seepage from the surrounding strata may occur in the tunnel excavation during construction.	Localised site pumping. Discharge to watercourse or disposal via on-site methods (e.g. drying beds, sludge lagoons, tank storage).
2	Groundwater ingress into tunnel (operational phase)	Low	Groundwater intrusion/seepage from the surrounding strata may occur in the tunnel during operation.	Subject to performance criteria (by daa), good quality concreting works and (potentially) a waterproof membrane may be necessary.
3	Groundwater flooding at ground level	Low	Localised groundwater flow may be impeded by permanent works resulting in above ground flooding.	Below-ground flow diversion around tunnel.
4	Dewatering of cutting impacting local abstractions	Low	Abstractions located within the excavation's radius of influence may be adversely affected by dewatering during the temporary construction phase. However, the abstraction is likely drawing from the bedrock, which will not be excavated. The risk is therefore considered very low.	Carry out further investigation to accurately characterise groundwater situation. Ascertain strata being abstracted.
5	Dewatering of cutting impacting local water bodies	Low	Dewatering may adversely affect local water bodies. The EPA-listed Cuckoo Stream is	Carry out further investigation to accurately

Table 4-1: Preliminary Groundwater Risk Register

	Groundwater	Current	Description of current risk	Risk control measures
	hazard description	risk rating		
			within 300m of the proposed tunnel. However, dewatering is expected to occur in the sand/gravel lenses which would need to be hydraulically connected to a surface water body. This is deemed unlikely based upon the proximity of known water bodies.	characterise groundwater situation.
6	Creating a flow pathway through a bedrock aquifer fault	Negligible	Construction activities are expected to occur above the fault but not through it. The risk is considered low due to the depth and scale of the works.	None required.
7	Clay heaving under the tunnel construction (hydraulic failure)	High	Anticipating that the groundwater level, originating from the limestone aquifer, is at approx. 4 mbgl and limestone is encountered at approx. 28 mbgl under the tunnel alignment, there is risk of heave.	Depressurisation of the limestone aquifer (through deep wells) may be required.
8	Uplift/buoyancy of the tunnel (permanent phase)	High	The anticipated high groundwater level presents a buoyancy risk for the proposed tunnel. The large volume of displaced ground will exert a significant upwards hydrostatic net pressure on the base of the tunnel.	Should be counteracted within the tunnel design.

5. HYDROGEOLOGICAL INVESTIGATIONS

It is strongly recommended to conduct hydrogeological investigations for evaluation of the soil hydraulic parameters along the tunnel alignment.

It is proposed to undertake a programme of hydrogeological investigations consisting of a combination of the following activities:

Borehole drilling with a hydrogeological objective

It is proposed to conduct a drilling programme consisting of a combination of 6" and 10" boreholes to install wells and piezometers targeting the permeable zones encountered during the drilling. The wells will be installed with 165 mm dia. PVC screens and the piezometers with 63 mm dia. PVC screens. This will allow for conducting pumping tests with observation wells and slug tests or double packer tests if deemed more suitable.

Furthermore, piezometers to verify the piezometric level of the underlying regional aquifer should be installed to assess the stability of the excavation base.

It should be considered to conduct a scheme of geophysical borehole logging including propeller flow logging in all boreholes to obtain a better understanding of the hydrogeological conditions for establishing the conceptual hydrogeological model.

The installed wells will be fully developed as part of the drilling programme to ensure that reliable results will be obtained from the subsequent hydraulic testing. The wells used for the investigation will be located and designed in order for them to be applied for the temporary groundwater lowering system.

The hydrogeological drilling campaign will be coordinated with the geotechnical investigations to reduce investigations cost and access issues.

Pumping tests

Currently no site-specific hydraulic data exists for the tunnel alignment. Pumping tests and double packer tests will be conducted to obtain a hydrogeological understanding of the conditions in the project and design input for the temporary groundwater lowering system. The hydraulic tests will comprise:

- double packer tests in low yielding strata to obtain values for the hydraulic conductivity of tested sections;

- step-drawdown pumping tests to obtain values such as transmissivity, and formation loss and well loss constants used for assessment of optimal yield of the constructed wells

- constant rate pumping tests with monitoring wells to obtain aquifer parameters such as transmissivity, storativity and potential leakage between aquifers;

During the pumping tests water quality samples will be collected for analysis.

Groundwater monitoring

Groundwater monitoring will be used to operate the temporary groundwater lowering system to maintain a dry excavation and to mitigate settlement of the nearby buildings and structures.

It is recommended to commence groundwater monitoring in the project area at least one year in advance of the temporary groundwater lowering to obtain data on background water levels including

seasonal variations of groundwater levels. During the temporary groundwater lowering, groundwater monitoring will be conducted in monitoring wells inside and outside the excavation.

Groundwater modelling

The results of the hydrogeological investigations described above along with the existing geological information should be used to set up a project specific 3D numerical groundwater model. The groundwater model will be used to design the groundwater control system (coordinated with the tunnel design), to assess the effects on the environment and hence provide suggestions for reduction of settlement effects on existing structures and provide input for liaison with authorities.

6. **RECOMMENDATIONS**

It is recommended that detailed groundwater monitoring is undertaken as part of a site-specific ground investigation (GI). Further details on the recommended GI are presented in the document: *Specification for Ground Investigation* (Document No.: 1100040489-GEO-NOT-5000).

The GI Specification includes the proposed groundwater investigations that are deemed necessary to properly evaluate groundwater risks associated with the construction and operation of the tunnel as well as for the determination of the necessary mitigation and management measures. This should be undertaken before the completion of outline design and any tendering period for a construction contract.

Groundwater monitoring is recommended to be undertaken in conjunction with GI and other activities to minimise periods of runway closure and maximise time and cost efficiency. Monitoring should occur for the duration of at least one wet season (October to February) or longer. The GI Specification includes an indicative borehole location plan. It is recommended to coordinate location of boreholes with the geotechnical drilling. Long-term monitoring schedules should be designed with wider site context in mind.

Remote recording and download of data is suggested due to the site being within an active airside environment.

It is recommended that groundwater chemical testing is undertaken in addition to this so that both quality and quantity factors can be determined (by the EIAR Consultant). The former is particularly important when considering water disposal.

Scope	Reason
Determine groundwater levels - It is	Groundwater levels, seasonal variation and
recommended that there be continuous	groundwater pressure must be determined to properly
groundwater monitoring with the use of pressure	identify the risks, dewatering requirements, and to
transducers and dataloggers at 4-8 locations.	inform the design and applicable mitigation measures.
This should occur over at least one wet season.	
Several wells should either extend into the clay	
strata only or have the appropriate screen height	
to measure groundwater from sandy and gravelly	
lenses independent of the bedrock aquifer.	
Specifics and design of installations can be	
confirmed as part of a detailed GI specification.	
Identify areas of localised high	Permeable granular horizons may contain groundwater,
groundwater risk – utilisation of pumping tests	behave as flow pathways and necessitate increased
or other hydraulic tests to determine hydraulic	dewatering during the construction phase.
regime along tunnel route.	
Determine groundwater quality – chemical	Identifying the chemical nature of the groundwater will
testing of groundwater to identify contaminants.	count towards the determination of discharge consents
Hydrocarbons, de-icers and fire retardants	(if applicable).
(PFOS/PFOA) are likely possibilities considering	
current site usage. Details of the chemical	
testing to be specified by the EIAR Consultant.	


Table 6-1: Recommendations for tunnel specific groundwater investigations.

Scope	Reason
Determine groundwater pressure – pressure to be identified within superficial strata and bedrock. This can be calculated during the measurement of groundwater levels.	Higher groundwater pressure increases the risk of groundwater ingress into the tunnel space.
Identify vertical distribution of inflow – it is recommended to undertake geophysical borehole logging including flow logging to determine inflow zones and impermeable zones in the limestone.	Results from the geophysical borehole logging allow to optimise the well design and thus reduce the required number of wells for the groundwater lowering system.

Table 6-1: Recommendations for tunnel specific groundwater investigations.

APPENDIX 1

ADDITIONAL AIRFIELD BOREHOLES-GIR BOREHOLE LOGS WITH LOCATION PLAN

Flush : Po	eretta T44 olymer	&	Casing 20 10	Diamete Omm cas	ww.gii.ie er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Additional Airfield Boreholes Client DAA	Job Number 7687-04-1
Core Dia: 102 mm Method : Cable Percussion & Geobore S		Location 315950.6 E 242860.5 N			Dates 21/05/2018		Engineer Balfour Beatty	Sheet 1/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
							(1.20)	Open Hole - Air Excavation	
1.20-1.65 1.20-1.20					1,1/1,2,2,2 SPT(C) N=7 B	62.82	(0.60)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 <u>.0.0</u>
2.00-2.45 2.00-2.00					3,6/7,7,7,8 SPT(C) N=29 B	62.22	1.80 1.20)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 - 7 - 4 - 0 - 7 - 7 - 0 - 7
3.00-3.30 3.00-3.00					1,8/13,11,26 SPT(C) 50/150 B	61.02	(0.50)	Very stiff black slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0
3.50	100					00.52		Very stiff dark grey/brown slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	8.00.00 .0.000 .0.000 .0.000 .0.0000 .0.000 .0.000 .0.0000 .0.0000 .0.000 .0.000 .0.000 .0.0000
4.30 4.30-4.45	100				16,17/50 SPT(C) 50/0				
5.80 5.80-5.95	100				19,25/50 SPT(C) 50/0		(5.90)		
7.30 7.30-7.45	100		-		20,25/50 SPT(C) 50/0				2010 1000 1000 1000 1000 1000 1000 1000
8.80 8.80-85.00	100		-		27,25/50 SPT(C) 50/0	54.62		Very stiff brown slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Remarks Cable Percus	ssion borel	hole termi	nated due	e to Obst	rction - Presumed Bo 2.70m BGL	oulder	<u> </u>	Scale (approx	Logged
Borehole bac Chiselling fro	ckfilled upo	n comple	tion with b	bentonite	grout			1:50 Figure	S Kealy No. 04-18.BH01

	(Grou	nd In	vest w	igations Ire ww.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Bore Num BH	
Machine : Da Be Flush : Po Core Dia: 10	eretta T44 olymer	&	20	Diamete Omm cas 2mm cas	er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Client DAA	Job Num 7687-	
Method : Ca		ssion &	Locatio 31		242860.5 N	Dates 2	/05/2018	Engineer Balfour Beatty	Shee 2	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	Vater Vater
10.30 10.30-10.45	93		-		19,25/50 SPT(C) 50/0					<u> </u>
11.80 11.80-11.95	100		-		22,25/50 SPT(C) 50/0					والمالك المالك المالك المالك
13.30 13.30-13.45	100		-		25,25/50 SPT(C) 50/0					`२['ॐ!,`२['ॐ!)`२['ॐ!)`२ <u>[</u>
14.80 14.80-14.95	100		-		27,25/50 SPT(C) 50/0	48.52	E_			المعالمة الموالية ال موالية الموالية الموال
16.30 16.30-16.45	100		-		24,25/50 SPT(C) 50/0			Very stiff dark grey/brown slightly sandy gravelly CLAY v frequent sub-rounded cobbles and boulders. Gravel is fi to coarse sub-angular to sub-rounded		<u>؋ۥؖ</u> ٵؖۄٳۨ؋ڹٵؘۄٳۜ؋ۥٳ٦ۄٳڣٳ٦٥
17.80 17.80-17.95	100		_		25,25/50 SPT(C) 50/0		(5.30)	Lense of brown sandy clayey fine to coarse sub-angular to sub-rounded GRAVEL occurs between 17.85m to 18.35m BGL		<u>ۣۧٵؚڡٳٚۻ۬ٳٶٳۻ۬ٳٶٳۻٳۄؚ</u>
19.30 19.30-19.45	100		-		25,25/50 SPT(C) 50/0					<u>ڮٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ؆ٳ؇ڹ</u>
Remarks			1		1	<u> </u>	<u> </u>	Sc. (app	ile Logg ox) By	프 ged
								1:£		ealy

GROUND INVESTIGATIONS IRELAND	(Grou	nd In		igations Ire ww.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Boreh Numb BH(ber
Flush : Po	eretta T44 olymer	&	20	Diamete Omm cas 2mm cas	er sed to 3.50m sed to 32.70m		Level (mOD) 64.02	Client DAA	Job Numb 7687-04	
Core Dia: 10 Method : Ca Ge		ssion &	Locatio 31		242860.5 N	Dates 21	/05/2018	Engineer Balfour Beatty	Sheet 3/4	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
20.80	100				25,25/50	43.22		Very stiff dark grey/black slightly sandy grayelly CLAY with	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	
20.80-20.95	100				SPT(C) 50/0			Very stiff dark grey/black slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded		
22.30 22.30-22.45	100		_		25,25/50 SPT(C) 50/0					
23.80 23.80-23.95	100		-		25,25/50 SPT(C) 50/0					
25.30 25.30-25.45	100		-		25,25/50 SPT(C) 50/0					
26.80 26.80-26.95			-		25,25/50 SPT(C) 50/0		28.30			
28.30	100					35.72	28.30			
28.30	100	87	18			30.72		Medium strong thinly bedded grey fine to medium LIMESTONE partially to distinctly weathered with calcite veins. Interbedded with a weak to medium strong thickly laminated MUDSTONE partially to distinctly weathered		
29.80				16			(3.00)	Sequence contains one set of fratures. F1 are very close to closely spaced, dipping between 10-30 degrees, planar to stepped rough with some surface staining and clay infilling		
Remarks								Scale (approx) Logge By	əd
								1:50 Figure 7687-	S Kea No. 04-18.BH0	-

	(Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Ltd	Site Additional Airfield Boreholes		Boreho Number BH01
Flush : Po	eretta T44 olymer	&	20	Diamete 0mm cas 2mm cas	r ed to 3.50m ed to 32.70m		Level (mOD) 64.02	Client DAA		Job Numbe 7687-04-
Core Dia: 10 Method : C G		ssion &	Locatio		242860.5 N	Dates 21	/05/2018	Engineer Balfour Beatty		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
1.30	100	88	26			32.72		Madium atoms thinks hadded area fing to madi		
	100	52	7	NI			(1.40)	Medium strong thinly bedded grey fine to mediu LIMESTONE partially to distinctly weathered wi veins. Interbedded with a weak to medium stror laminated MUDSTONE partially to distinctly we Non Intact	th calcite og thickly athered	
32.70						31.32		Complete at 32.70m		
Remarks	<u> </u>		1	1	1		1		Scale (approx)	Logged By
									1:50 Figure N	S Kealy
										4- 18.BH01

Machine : D	ando 2000	Casing	WV Diamete		Ground	Level (mOD)	Site Additional Airfield Boreholes Client DAA	Borehole Number BH02 Job Number
netnod : C	able Percussion	Location		ed to 5.40m	Dates	62.30	Engineer	7687-04-1 Sheet
			6328.6 E	242937.8 N		6/05/2018- /05/2018	Balfour Beatty	1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.50-1.95 .50 2.50-2.95 .50	SPT(C) N=5 B SPT(C) N=38 B			1,1/1,1,1,2 3,5/5,9,10,14	61.10 60.40	(0.70)	OPEN HOLE - Air Excavation Soft to firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
.50-3.88 50 .50-4.65	SPT(C) 50/225 B SPT(C) 50/0			6,7/9,12,21,8	58.80	3.50 (1.50)	Very stiff brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
.50 .40-5.85 .40	B SPT(C) N=50 B			25,25/50	57.30	(2.00)	Very stiff black slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Complete at 7.00m	
Remarks	ons carried out to 1.2 minated due to Obst	20m BGL	esumed	Boulder			Scale (approx)	Logged By
hiselling fro	om 5.20m to 5.40m f	or 1 hour.					1:50	S Kealy
							Figure 7687-0	No.)4-18.BH0:

DP(R)h TCR SCR RQD FI Field Records (MSD) Degrad (The Kersol) Description Lu 1.00 40 - - - 1.00 - - - - 0 - - - 0 - - - 0 - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - - 0 - - 0 - - 0 - - 0 - - - 0 - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - - - - - - - - - - - -<	Machine : Be Flush : Po Core Dia : 10 Method : Ro	olymer)2&64 mm	t	Casing 10 64 Locatio	Diamete 2mm case mm case	ww.gii.ie sed to 28.70m ed to 33.50m	Dates	Level (mOD) 62.27 /05/2018-	Client DAA Engineer	Job Numbe 7687-04- Sheet
1.00 40 61.27 1.00 61.27 1.00 61.27 0.00 Film brown slightly sandy gravitly CLAY with occasional for bulk-course sub-angular to sub-rounded cobbles. Gravel is fine to coarse sub-a		-		31	6329 E 2	242933.5 N			Balfour Beatty	1/4
1.00 40 61.27 1.00 First brown slightly sandy gravely CLAY with occasional sub-oranded cobbins. Gravel is first to carse sub-angular to sub-rounded for the sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded for sub-oranded cobbins. Gravel is first to carse sub-angular to sub-oranded co	(m)	TCR	SCR	RQD	FI	Field Records	(mOD)	(m) (Thickness)	Description	Legend
40 10<				_			61.27			.DO
70 93 93 93 100	.00	40							sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	6-0-0-0
100 10,25/50 SPT(C) 50/0 57.57 SPT(C) 50/0 4.70 100 57.57 SPT(C) 50/0 4.70 100 57.57 SPT(C) 50/0 4.70 100 25,25/50 SPT(C) 50/0 57.57 SPT(C) 50/0	.70	93						(1.50)	to sub-rounded Lense of brown sandy clayey fine to coarse sub-angular to sub-rounded GRAVEL occurs between	200 200 200 200 200 200 200 200
70 Very sindy galety	.20 .20-3.35	100				19,25/50 SPT(C) 50/0	59.07		Very stiff dark brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
100 100 100 25,25/50 SPT(C) 50/0 (6.00) (6.00) (5.00) (6.00) (5.00) (6.00)		86				25,25/50 SPT(C) 50/0	57.57		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	2010 1000 1000 1000 1000 1000 1000 1000 1000 1000
70 70 25,25/50 100 100 100 100 100 20 25,25/50 100 20-9.35 25,25/50 100		100								
.20-9.35		100								
	.20 .20-9.35	100				25,25/50 SPT(C) 50/0				0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
Remarks Borehole carried out from ground level hir excavtion carried out to 1.0m BGL to avoid serivces	Remarks	ried out fro	m groun	d level	unid sort	(005			Scale (approx	Logged By

		rou		W١	igations Ire ww.gii.ie			Additional Airfield Boreholes	Num BHC	
Machine : Be Flush : Po Core Dia: 10	olymer		10		er sed to 28.70m ed to 33.50m		Level (mOD) 62.27	Client DAA	Job Num 7687-0	
Method : Ro		ł	Locatio 31		242933.5 N		5/05/2018- 0/05/2018	Engineer Balfour Beatty	Shee 2/	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	nd
10.70 10.70-10.85	100		_		25,25/50 SPT(C) 50/0	51.57		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u>ଌୄୗଡ଼୳ୖ୲ୡୄୗଡ଼୳ୖ୲ୡୄୗଡ଼୳ୖ୲ୡୄୗଡ଼୳ୖ୲ୡ</u>
2.20 2.20-12.35	70				25,25/50 SPT(C) 50/0		(3.00)	Brown slightly clayey sandy fine to coarse GRAVEL between 12.95m - 13.25m BGL		فبأتقل فباتقل فباتقل فبات
3.70 3.70-13.85	96		_		25,25/50 SPT(C) 50/0	48.57	13.70	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded		<u>िंक २२ िंक २२ िंक २४ २१ २९ १</u>
15.20 5.20-15.35	100		_		25,25/50 SPT(C) 50/0	47.09	<u> </u>	Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		الأخبا تكالأخبا تكالأخبا تكابا تكا
16.70 16.70-16.85	100		_		25,25/50 SPT(C) 50/0					<u> </u>
8.00 8.20-18.35	100		-		25,25/50 SPT(C) 50/0					<u>లు 7 దిలు 7 దిలు 7 దిలు 7 ది</u>
19.70 19.70-19.85					25,25/50 SPT(C) 50/0				0 <u>0</u> 0	<u>] 0 : - 0]</u>
Remarks								Scale (approx	() Logg By	jed
								1:50 Figure	S Ke No. 04-18.BH	

GROUND INVESTICATIONS IRELAND		Grou		WV	gations Ire vw.gii.ie			Site Additional Airfield Boreholes	Borehol Number BH02/
Flush : P Core Dia: 10	olymer		10	Diamete 2mm cas mm case	r ed to 28.70m d to 33.50m		Level (mOD) 62.27	DAA	Job Number 7687-04-1
Method : R		ł	Locatio 31		42933.5 N		/05/2018- /05/2018	Engineer Balfour Beatty	Sheet 3/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	95								
21.20	95		-			40.17	22.10	Very stiff thinly laminated dark brown slightly gravelly CLAY interlaiminated with a brown fine SAND	
22.70	100		-					Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
4.20	100								
5.70	100		_			35.57	26.70	Very stiff dark brown/grey sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	
27.20	96		-			35.07	(1.50)	Very stiff dark brown/grey sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
8.70	100	66	50				28.70	Medium strong to strong thinly bedded grey fine to medium grained LIMESTONE partially weathered. Interbedded with a black thickly laminated fine grained MUDSTONE	
30.00 Remarks	<u> </u>						<u> </u>		
nemarks								Scale (approx	
								1:50 Figure	S Kealy
									04-18.BH02/

		Grou	nd In		gations Ire /w.gii.ie	land l	_td	Site Additional Airfield Boreholes		Borehole Number BH02A
	olymer		10	Diamete 2mm cas			Level (mOD) 62.27	Client DAA		Job Number 7687-04-18
Core Dia: 1 Method : R			Locatio 31		42933.5 N		/05/2018- /05/2018	Engineer Balfour Beatty		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
	93	68	36	7			(2.80)	Sequence contains two sets of fractures. F1 are very close to closely spaced dipping between 10-20 degrees, undulating to planar smooth with some clay infilling. F2 are close to medium spaced, dipping between 60-70 degrees, undulating to stepped rough with some clay smearing. Non Intact Zone between 29.45m - 29.70m BGL	/	
31.50						30.77	31.50	Medium strong to strong thinly bedded grey fine to med	dium	
31.70	97	71	52	7			(2.00)	grained LIMESTONE partially weathered. Interbedded a black thickly laminated fine grained MUDSTONE Sequence contains two sets of fractures. F1 are very close to mediumspaced dipping between 10-20 degrees, undulating to planar smooth with some clay infilling. F2 are widely spaced, dipping between 60-7 degrees, undulating to stepped rough with some clay smearing.	/ /	
								Non Intact Zone between 31.70m to 31.80m BGL	-	
33.50								Complete at 33.50m		
Remarks	1		1			<u> </u>		S (ap	icale prox)	Logged By
									1:50	S Kealy
									igure N 687-04-	o. 18.BH02A

Machine : D	ando 2000 eretta T44		Casing	WV Diamete			Ltd Level (mOD)	Site Additional Airfield Boreholes Client DAA	Borehol Number BH03 Job Number
Flush : Po Core Dia: 10	olymer 02 mm		102	2mm cas 2mm cas	sed to 3.10m sed to 22.50m				7687-04-
/lethod : C G	able Percu eobore S	ssion &	Locatio 31		243177.1 N	Dates 15 19	5/05/2018- 9/06/2018	Engineer Balfour Beatty	Sheet 1/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.20					B 4,4/3,3,3,3 SPT(C) N=12			OPEN HOLE - Air Excavation Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	.0 <u>-0-</u> 0 6 - 0 - 0 0 - 0 -
.50-1.95 .50 .50-2.80 .50	100				7,8/11,12,27 SPT(C) 50/150 B			Very stiff dark brown/grey slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
1.50 1.50-4.80	100				5,7/12,14,24 SPT(C) 50/150			Very stiff dark brown slightly sandy gravelly CLAY with ocasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	
3.00 3.20-6.35	100		_		21,25/50 SPT(C) 50/0				
7.50 7.50-7.65	88		-		25,25/50 SPT(C) 50/0			Very dense brown slightly silty fine to coare SAND	2000 200 2000 2
9.00 9.00-9.45	97		-		5,6/7,6,7,8 SPT(C) N=28				
Remarks	ons carried	out to 1.2	20m BGL		1			Scale (approx	Logged
Cable percs Borehlole ba	uuion borel ckfilled wit	hole termi h bentoni	inated due te upon co	to Obst	rction - Presumed Bo า	ulder			
chiselling fro	3.00m t	0 3. IUM T	or i nour.					1:50 Figure	S Kealy
									NO. 04-18.BH0

Machine : Da	ando 2000		Casing	W	igations Ire ww.gii.ie m		Level (mOD)	Additional Airfield Boreholes Client	Number BH03 Job
	eretta T44 olymer		200) mm ca	sed to 3.10m sed to 22.50m		/	DAA	Number 7687-04-
Core Dia: 10)2 mm		Locatio		seu to 22.3011	Dates		Engineer	Sheet
Method : Ca Ge	able Percus eobore S	ssion &			E 243177.1 N	15	5/05/2018- 9/06/2018	Balfour Beatty	2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.50 0.50-10.88			_		8,11/11,12,14,13 SPT(C) 50/225		(0.65)	Very stiff brown sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	
	94						10.90 (0.70) 11.60 (0.55)	Very stiff brown laminated CLAY with lenses of brown fine to medium SAND	
2.00 2.00-12.38			_		10,11/12,14,14,10 SPT(C) 50/225		12.15	Very dense brown slightly silty fine to coarse SAND Very stiff dark brown gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular	
	93						(0.35) 12.50	sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff dark brown slightly gravelly CLAY with lenses of brown fine SAND	
3.50 3.50-13.65			_		14,21/50 SPT(C) 50/0		13.40 13.50 (0.30)	Very dense brown fine to caorse SAND	
3.50-13.65					SPT(C) 50/0		13.80 13.90	Very stiff brown slightly sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded Very dense brown fine to medium SAND	
	85		_				(1.10)	Very stiff brown very sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	2000 2000 2000 2000 2000 2000 2000 200
5.00 5.00-15.15	100				24,25/50 SPT(C) 50/0			Very stiff brown sandy gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.50 6.50-16.65					21,25/50 SPT(C) 50/0				
7.35	100	30	17		-		(2.35)	Medium strong thinly bedded grey/dark grey fine grained LIMESTONE partially to distinctly weathered	
8.00	97	66	38					Sequnce contains two sets of fractures. F1 are close to medium spaced, dipping between 10-30 degrees, undulating to planar rough with some surface staining and clay infilling. F2 are widely spaced, dipping between 50-70 degress, planar smooth with some surface staining and Clay infilling	
9.50				5					
Remarks	I							Scale (approx)	Logged By
								1:50	S Kealy
									No.

	(Grou	nd In	vesti wv	gations Ire vw.gii.ie	land	Ltd	Site Additional Airfield Boreholes		Borehol Number BH03
Machine : Da Be Flush : Po Core Dia: 10	eretta T44 olymer	&		Diamete 0mm cas 2mm cas	r ed to 3.10m ed to 22.50m	Ground	Level (mOD)	Client DAA		Job Number 7687-04-1
Method : Ca		ssion &	Location 31		243177.1 N	Dates 15 19	/05/2018- /06/2018	Engineer Balfour Beatty		Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
	98	92	6				(5.15)			
1.00	100	81	63							
22.50								Complete at 22.50m		
Remarks							-		Scale (approx)	Logged By
									1:50	S Kealy
									Figure N	lo. 4-18.BH03

Instruct : Cable Precusation A Genome 34 (1995) 316249 E 243100.1 N 26052015 - Baffour Bestry Instruct E All (1995) Description Logs 98/h TOR SCR ROD PI Field Records (1905) Baffour Bestry Logs	E	Dando 2000 Beretta T44 Polymer	&	10	Diamete Omm cas 2mm cas	ww.gii.ie sed to 7.00m sed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA	Job Numbe 7687-04-
30.1.75 11/1.2.1.2 B ¹ T(0, N=0 61.53 E ¹ (1.20) OPEN HOLE - Ar Excavation 30.1.75 1.1/1.2.1.2 B ¹ T(0, N=0 61.53 E ¹ (1.20) MADE GROUND consisting of brown slightly sandy gravely CLAY with occasional sub-rounded cobbles. Gravel is fine to consisting of brown gravely CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse au-arguiner to sub-rounded 7 50.2.95 1.3/4.6.6.11 SPT(0, N=27 B ¹ T(0, N=01 B	Alethod : C	Cable Percs				243108.1 N	16		-	Sheet 1/4
30.1.75 1.11/1.2.12 SPTICI Neg 61.53 End SPTICI Neg 1.01/2.12 SPTICI Neg 0.1.05 End SPTICI Neg 1.01/2.12 SPTICI Neg 0.0.00 SPTICI Neg 0.0.00 SPTICI Neg NADE GROUND consisting of hrow alightly sandy gravely CLAV with coarse sub-angular to sub-rounded 1.21/2.21/2 SPTICI Neg 1.21/2.21/2/2.21/2/2.21/2/2.21/2.21/2.2	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
30.1.75 SPT(C) N=6 SPT(C) SPT								(1.20)	OPEN HOLE - Air Excavation	
So 2.95 So 2.95 <t< td=""><td>.30-1.75 .30</td><td></td><td></td><td></td><td></td><td>SPT(C) N=6</td><td>61.53</td><td></td><td>CLAY with occasional sub-rounded cobbles. Gravel is fine</td><td></td></t<>	.30-1.75 .30					SPT(C) N=6	61.53		CLAY with occasional sub-rounded cobbles. Gravel is fine	
50-3.55 50 SPT(C) N=51 0.52.5 0.50 Very stiff and to soub-rounded cobbles. Gravelly CLAY with occasional sub-ounded cobbles. Gravel s fine to coarse sub-angular to	2.50-2.95 2.50					SPT(C) N=27	60.73		occasional sub-rounded cobbles. Gravel is fine to coarse	
50-4.80 SPT(C) 50/150 S0-2.5 4.30 Very stiff black slightly sandy gravelly CLAY with occassional to sub-rounded 25 50-5.60 SPT(C) SPT(C) (2.50) (2.50) (2.50) 50-6.65 SPT(C) SPT(C) (2.50) (2.50) 50-6.65 SPT(C) SPT(C) (2.50) 100 SPT(C) (2.50) (2.50) 100 SPT(C) <td>9.50-3.95 9.50</td> <td></td> <td></td> <td></td> <td></td> <td>SPT(C) N=51</td> <td>59.23</td> <td></td> <td>occasional sub-rounded cobbles. Gravel is fine to coarse</td> <td>0.000 0.0000 0.0000 0.0000 0.000000</td>	9.50-3.95 9.50					SPT(C) N=51	59.23		occasional sub-rounded cobbles. Gravel is fine to coarse	0.000 0.0000 0.0000 0.0000 0.000000
50-5.60 B (2.50) 50-6.65 SPT(C) 50/0 50 B 100 55.73 100 20.25/50 50-8.65 20.25/50 100 20.25/50 100 20.25/50 100 20.25/50 50-8.65 20.25/50 100 20.25/50 SPT(C) 50/0 E E E 100 E E E E E E E	.50-4.80 .50					SPT(C) 50/150	58.23	4.50	sub-rounded cobbles. Gravel is fine to coarse sub-angular	0-0-0 0-
50-6.65 50 00 100 100 50-8.65 100 20.25/50 SPT(C) 50/0 100 20.25/50 SPT(C) 50/0 100 20.25/50 SPT(C) 50/0 SPT(C) 50/0 SP	.50-5.60 .50					SPT(C)		(2.50)		0.000 0.0000 0.0000 0.000000
100 100 20,25/50 50-8.65 100 20,25/50 SPT(C) 50/0 E E E E E E E E E E E E E	.50					SPT(C) 50/0	55.73	7.00	Very stiff brown/grey slightly sandy gravelly CLAY with	0.00 0.00
50 20,25/50 1,20 50-8.65 SPT(C) 50/0 1,20 100 100 100 0.00 <		100							fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Remarks ir excavations carried out to 1.20m BGL	50-8.65	100								
iii excavations carined out to 1.2011 Bolt (approx) By (approx) By (approx) By	Remarks					1	1		Scale	Logged
maple disturbance from 4.50m to 6.50m BGL due to borehole collapse beobore S techniques carried out from 4.50m BGL to 20.0m BGL and ConventionIa HQ rotary coring carried out from 20.0m BGL to 32.70m BGL 1:50 S Ke	able percu	ussion borel	nole termir m 4 50m t	nated due	3GL due	to horehole collanse			(approx)	By

				W١	igations Ire ww.gii.ie			Site Additional Airfield Boreholes	Borehole Number BH04
Flush : Po	eretta T44 olymer		10	2mm ca	er sed to 7.00m sed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA	Job Number 7687-04-1
Core Dia: 10 Method : Ca G			Locatio 31		243108.1 N		6/05/2018- 1/05/2018	Engineer Balfour Beatty	Sheet 2/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.00-10.15	97				22,25/50 SPT(C) 50/0				(19) (19) (19) (19) (19) (19) (19) (19)
11.50 11.50-11.65	100		_		19,25/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 11.40m - 11.90m BGL	
13.00 13.00-13.15	97		-		25,25/50 SPT(C) 50/0	49.73		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded	
14.50 14.50-14.65	96		_		22,25/50 SPT(C) 50/0		(3.85)		2 2 2 2 2 2 2 2 2 2 2 2 2 2
16.00 16.00-16.15	60		_		19,25/50 SPT(C) 50/0	45.88		Poor Recovery - Driller notes gravelly CLAY. Recovery consists grey fine to coarse angular to sub-angular Gravel with Clay washed away	
17.40 17.40-17.55	100		-		22,25/50 SPT(C) 50/0		(1.15)		0 0 0 0 0 0 0 0 0 0 0 0
18.00 18.00-18.15	0		-		25,25/50 SPT(C) 50/0	44.73		Core Loss - Driller notes silty sandy CLAY	0.01 0.01
19.00 19.00-19.23	0		-		11,14/15 SPT(C) 15/75				0 0 0 0 0 0 0 0 0 0 0 0 0 0
20.00 Remarks			1				F	01-	100004
								Scale (approx 1:50 Figure 7687-	S Kealy

Listen is explaned Listen is explaned DAA Toper- listende Data Data Toper- listende Data Data <thdata< th=""> <thdata< th=""></thdata<></thdata<>					W	igations Ire ww.gii.ie			Additional Airfield Boreholes	Numbe BH04
Inclusion Details Details Details Details Sectors	Be Flush : Po	eretta T44 olymer	α	10	2mm cas	sed to 20.00m		. ,		Job Numbe 7687-04-
0.00-20.15 60 1 22.25 20.00 Very stiff dirk brownigery sliphtly sandy gravely CLAY with occasional ad-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables and boulder. Gravel is in the outer sub-output of a sub-rounded cables. Gravel is in the output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cables. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cable. Gravel is into cables and output of a sub-rounded cables and output of a sub-rounded cables. Gravel is into cables and represented and output of a sub-rounded cables. Gravel is into cables and represented	/lethod : Ca	able Percs	ussion &			243108.1 N	16			Sheet 3/4
1 20 00 100 <th>Depth (m)</th> <th>TCR</th> <th>SCR</th> <th>RQD</th> <th>FI</th> <th>Field Records</th> <th>Level (mOD)</th> <th>Depth (m) (Thickness)</th> <th>Description</th> <th>Legend</th>	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
2.70 60	20.00-20.15	60				22,25/ SPT(C)	42.73		Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is fine to coarse sub-angular to sub-rounded	0.0000000 0.0000000
4.20 38.53 24.20 4.20 100 38.53 24.20 5.70 68 (3.35) 4.20 5.70 86 (3.35) 4.20 7.55 100 75 98 (3.35) 8.70 100 75 98 (4.15) 100 91 63 7 (4.15)	1.20	60						(4.20)		
4.20 100 100 100 5.70 86 7.20 7.55 100 75 98 8.70 100 91 63 7 Remarks Remarks Kemark	2.70	80					20.52			<u> </u>
86	:4.20	100		-			38.53		to sub-rounded Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between	
27.55 100 75 98 35.18 27.55 Medium strong thinly bedded dark grey fine grained LIMESTONE partially to distinctly weathered interbedded with a dark grey black thickly laminated MUDSTONE 28.70 100 91 63 7 (4.15) The sequence contains two sets of fractures. F1 are close to medium spaced, dipping between 45-80 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees, undulating rough with some surface staining Scale (approx) bgg Remarks	25.70	86								
100 91 63 The sequence contains two sets of fractures. F1 are close to medium spaced, dipping 5-25 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees, undulating rough with some surface staining Remarks (4.15) Scale (approx) bggg	27.20 27.55	100	75	98		-	35.18		LIMESTONE partially to distinctly weathered interbedded	
(approx) By	8.70	100	91	63	7				close to medium spaced, dipping 5-25 degrees, undulating rough with some clay surface staining. F2 are widely spaced, dipping between 45-80 degrees,	
1:50 S Ke	Remarks			1	I	1			Scale (approx)	Logged By
									1:50	S Kealy

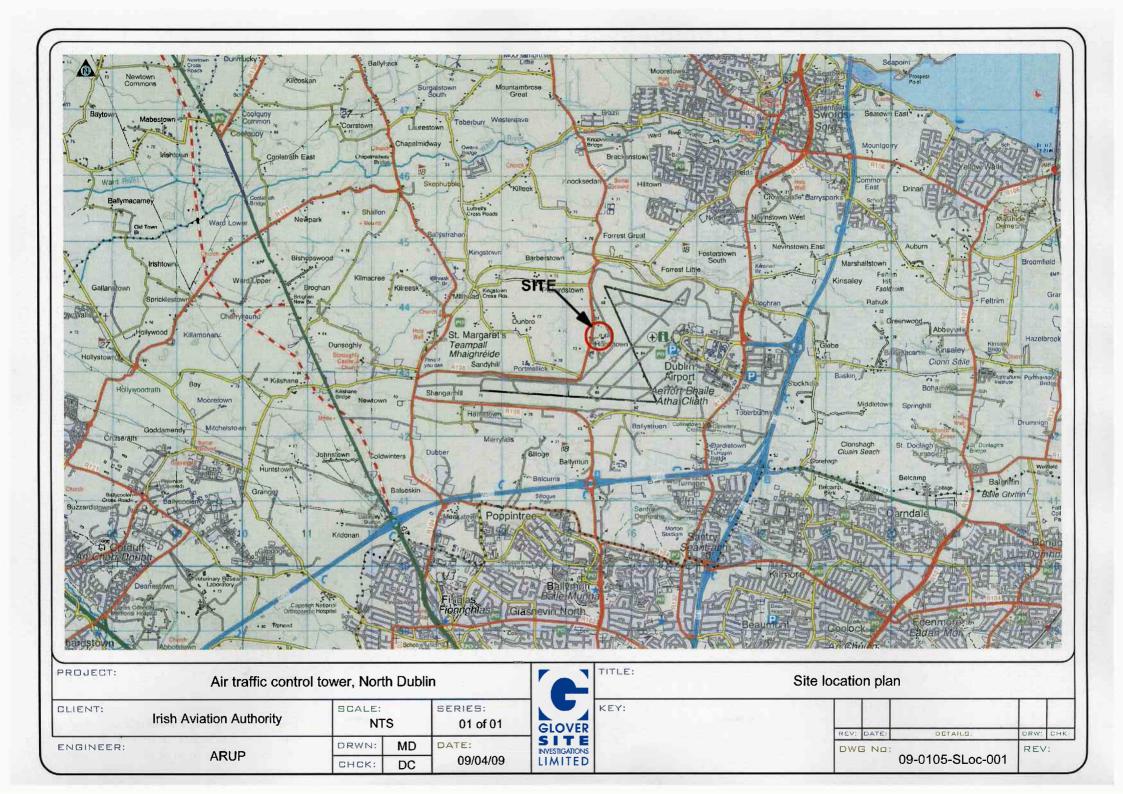
				WV	igations Ire vw.gii.ie	and	Ltd	Site Additional Airfield Boreholes		Boreho Numbe BH04
lush : Po	eretta T44 olymer		Casing 20 10 64	Diamete Omm cas 2mm cas mm case	r ed to 7.00m ed to 20.00m ed to 32.70m		Level (mOD) 62.73	Client DAA		Job Numbe 7687-04-
ore Dia: 10 lethod : Ca Ge			Locatio 31		43108.1 N	Dates 16/05/2018- 24/05/2018		Engineer Balfour Beatty		Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
0.20	93	86	57	_						
1.70	95	94	32	5		31.03	31.70 (1.00)	Medium strong thinly bedded dark grey fine grain LIMESTONE partially to distinctly weathered inte with a dark grey black thickly laminated MUDSTC The sequence contains one set of fractures. F close to medium spaced, dipping 5-25 degrees undulating rough with some clay surface staining	5,	
								Complete at 32.70m		
Remarks									Scale (approx)	Logged By
									1:50 Figure N 7687-04	S Kealy No. 4-18.BH04

Machine : D Flush : P	8	nd Investigations Ire www.gii.ie Casing Diameter 200mm cased to 4.70m			Ground Level (mOD) 65.10		Additional Airfield Boreholes Client DAA	Number BH05 Job Number		
Core Dia: 102 mm Method : Cable Percussion & Geobore S Rotary Cored			102mm cased to 28.50m Location 316004.1 E 243983.1 N			Dates 17/05/2018- 01/06/2018		Engineer Balfour Beatty	7687-04-18 Sheet 1/3	
							(1.20)	OPEN HOLE - Air Excavation		
1.20 1.50-1.95					B 4,4/3,3,3,3 SPT(C) N=12	63.90	1.20 (0.90)	Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0 0.0 0	
2.00 2.50-2.80					B 7,8/11,12,27 SPT(C) 50/150	63.00	2.10	Stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0	
3.00					в	62.10	3.00	Very stiff black slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4.00					В		(1.70)		00000000000000000000000000000000000000	
1.70	100		_			60.40	4.70 4.70 (1.50)	Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 4.70m - 4.90m BGL		
5.20 5.20-6.35	100		_		19,25/50 SPT(C) 50/0	58.90		Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		
7.50 7.50-7.65	96		-		21,25/50 SPT(C) 50/0					
9.00 9.00-9.15	400		_		19,25/50 SPT(C) 50/0	56.10		Very stiff dark brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		
Remarks	100								0 <u>.05</u> 0 6000	
Air excavations carried out to 1.20m BGL Cable Percussion borehole terminated at 4.20m BGL due to Obstrction Geobore S Rotary techniques carried out from 4.20m to 28.50m BGL Borehole backfilled with bentonite upon completion								Scale (approx)	Logge By	
Borehole bar Chiselling fro	ckfilled with om 4.10m t	h bentonit to 4.20m f	e upon co or 1 hour.	mpletior				1:50 Figure 7687-0	S Kealy No. 04-18.BH0	

Machine : Dando 2000 & Beretta T44 Flush : Polymer Core Dia: 102 mm Method : Cable Percussion & Geobore S Rotary Cored			WWW.gii.ie Casing Diameter 200mm cased to 4.70m 102mm cased to 28.50m Location 316004.1 E 243983.1 N			Ground Level (mOD) 65.10 Dates 17/05/2018- 01/06/2018		 Client DAA Engineer Balfour Beatty 	BH0 Job Numbe 7687-04
									Sheet 2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.50 10.50-10.65	100		-		22,25/50 SPT(C) 50/0	54.05	(2.05)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	ို ရဲ့လုပ် စရှိသည့် ရေးကို စရှိသည်။ ဒီလျှန်မှ အနေရေ ရမ္မာ အချွန်မှာ ရေး စရုပ် ရန်မာ ရေးစရုန်မျိုးရေး ရေးနေရာ နီ ရက္ခြန်မာ ရေးစရုန်မျိုးရှိ နေရာ
2.00 2.00-12.15	100		-		22,25/50 SPT(C) 50/0	52.75	(1.30)	Very stiff dark brown/grey slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	(*) (*) (*) (*) (*) (*) (*) (*)
13.50 13.50-13.65	100		-		25,25/50 SPT(C) 50/0	51.60 51.40	= (0.20)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff dark brown/grey slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	
15.00 15.00-15.15			-		22,25/50 SPT(C) 50/0	50.10	15.00	Very dense brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL with occasional sub-rounded cobbles	
16.50 16.50-16.65	100		-		25,25/50 SPT(C) 50/0		(2.30)		
8.00 8.00-18.15	100		-		25,25/50 SPT(C) 50/0	47.80		Very stiff black slightly sandy gravelly CLAY with frequent sub-rounded cobbles and occasional boulders. Gravel is fine to coarse sub-angular to sub-rounded	କିତ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ ସାମ୍ପ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ବ୍ୟୁକ୍ତାର୍ବ୍ୟୁକ୍ତି କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ କାର୍ଚ୍ଚ
19.50 19.50-19.65	100		-		25,25/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 19.50m - 19.90m BGL	60000000000000000000000000000000000000
Remarks								Scale (appro)	() Logge By
								1:50	S Keal

	(Grou	nd In		gations Ire	land	Ltd	Site Additional Airfield Boreholes	Boreho Numbe BH0
Flush : Po	eretta T44 olymer	&	20		r ed to 4.70m ed to 28.50m		Level (mOD) 65.10	Client DAA	Job Numbe 7687-04
			Locatio 31		243983.1 N		7/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
21.00 21.00-21.15	100		_		25,25/50 SPT(C) 50/0		(6.50)		
22.50	100		_						0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	100					41.30	F I		0.0.0 0.0.000000
24.00 24.20	100	80	53			40.90	(0.40)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Medium strong thickly laminated to thinly bedded dark grey fine grained LIMESTONE with calcite veins partially to distinctly weathered. Interbedded with a weak thickly laminated brown/black MUDSTONE partially to distinctly weathered Sequence contains one set of fractures. F1 is medium spaced, dipping between 20-30 degrees, planar rough with some Clay smearing	
25.50	100	73	63	5		38.20			
26.90 27.00	100	36	16	6		38.20	26.90	Medium strong thickly laminated to thinly bedded dark grey fine grained LIMESTONE with calcite veins partially to distinctly weathered. Interbedded with a weak thickly laminated brown/black MUDSTONE partially to distinctly weathered Sequence contains two sets of fractures. F1 is very close to closely spaced, dipping between 20-30 degrees, undulating rough with clay infilling. F2 are widely spaced, dipping between 75-85 degrees, planar smooth with sme clay smearing Residual rock recovered as a brown sandy slightly	
28.50						36.60		28.40m BGL Complete at 28.50m	
Remarks								Scale (approx) 1:50	S Kealy
								Figure 7687-0	No. 04-18.BH0

Flush : P	44 olymer		10	Diamete Omm cas 2mm cas	ww.gii.ie sed to 3.60m sed to 27.50m ed to 38.00m		Level (mOD) 67.81	Client DAA	Job Num 7687-	nber
Core Dia: 10 Method : G R		& HQ	Locatio		E 244020.6 N		3/05/2018- /06/2018	Engineer Balfour Beatty	She 1	et /4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legei	nd
							(1.20)	OPEN HOLE		
1.20-1.65 1.20					1,1/3,2,2,3 SPT(C) N=10 B	66.61	(0.80)	Firm brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u>ି ଜ୍ଞ୍</u> ତି କ
2.00-2.45 2.00					3,9/9,10,14,17 SPT(C) N=50 B	65.81 65.51	(0.30)	Stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded		<u>ି ବାନ୍ତି କା</u> ର୍ଦ୍ୟ
3.00-3.15					25,25/50 SPT(C) 50/0	64.81	(0.70)	Very stiff brown slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded Very stiff black slightly sandy gravelly CLAY with occasional		<u><u></u></u>
3.00 3.60			-		B		(0.90)	sub-rounded cobbles. Gravel is fine to coarse sub-angular to sub-rounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u> 0. 0. 0. 0.
	86					63.91	3.90	Very stiff brown/grey slightly sandy gravelly CLAY with occasional sub-rounded cobbles. Gravel is fine to coarse sub-angular to subrounded	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> 0 0 00 00 000 000 000 000 000 000 000</u>
4.70 4.70-4.85	100		_		14,19/50 SPT(C) 50/0			Lense of brown sandy clayey sub-angular to sub-rounded fine to coarse GRAVEL occurs between 4.60m - 4.90m BGL		<u>ૡૺૺૺૺૺૺૺઌ૽ૼૡૺૺૺૺૺૺૺૺઌૺૺૺૺૺૺૺૺૺઌ૽ૼૡૺૺૺૺૺઌ</u> ૽
3.20 5.20-6.35	100				23,25/50 SPT(C) 50/0		(5.60)			<u>ૄૺઌ૽ૺ૾ૺૡૺૢ૽ઌ૽ૺૢ૾ૺૡૺૢ૽ઌ૽ૼૢૺૡ</u> ૿ઌ૽ૼૢૺ
7.70 7.70-7.85	100		_		22,25/50 SPT(C) 50/0					<u>ૺ૾ૺૡૺ</u> ૺૻ૾ઌ૾૽૾૾ૺ૾૾ૡૺૺ૽ઌ૽ૼૺ૾ૺ૾ૺઌ
9.20 9.20-9.35	100				25,25/50 SPT(C) 50/0	58.31	9.50	Residual Rock - Recovered as very stiff brown slightly sandy gravelly CLAY with relic bedding fabric throughout and lenses of fine brown Sand		<u>ؖ؞ٳ؞ؘٳ؞ؘۥ</u> ٳڞ۬ٳڲۄٳڞ
Remarks Air excavatio	ons carried	out to 1.2	0m BGL 3.60m BC	SL due tr	Obstrction - Presum	ed Boulder		Scale (appro:	() Log	ged
Geobore S to	echniques al HQ Rotar ckfilled with	carried ou ry Techniq n bentonite	it from 3.6 ues carrie e upon co	0m to 2 ed out fro	7.50m BGL om 27.50m to 31.50m			1:50 Figure	S Ke	ealy


		Grou	nd In		igations Ire ww.gii.ie	land	_td	Site Additional Airfield Boreholes	Borehole Number BH06
	l4 olymer	Beretta	10	2mm ca	er sed to 3.60m sed to 27.50m ed to 38.00m		Level (mOD) 67.81	Client DAA	Job Number 7687-04-18
Core Dia: 10 Method : Ge Ro		k HQ g	Locatio		E 244020.6 N		/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 2/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
10.70			-		24,25/50	57.61		Residual Rock - Recovered as very stiff brown with orange and black mottling slightly sandy CLAY with relic bedding and occasional angular cobbles	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0
10.70-10.85	100				SPT(C) 50/0				00000000000000000000000000000000000000
12.20 12.20-12.35	100		_		25,25/50 SPT(C) 50/0				
13.70 13.70-13.85	100		-		25,25/50 SPT(C) 50/0	54.11		Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix	
15.20			-						
16.70	100		_				(4.50)		
	100								
18.20	93					49.61		Residual Rock - Recovered as brown/grey with orange and black mottling CLAY with relic bedding and lenses of Sand	
19.70			_				(3.00)		
Remarks			1	<u> </u>	1			Scale (approx)	Logged By
								1:50 Figure	S Kealy

Т	Dando 2000 44 Polymer	Beretta	Casing 20 10 64	Diamete Omm cas 2mm cas	vw.gii.ie r ed to 3.60m ed to 27.50m d to 38.00m		Level (mOD) 67.81	Client DAA	Job Numb 7687-04
Alethod : G	Geobore S & Rotary Corin	, HQ g	Locatio 31		244020.6 N		8/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 3/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
	96								
1.20	100					46.61	21.20	Weathered Rock - Recovered as medium strong laminated grey fine grained LIMESTONE distinctly weathered	
2.70 3.00	91.3		-			45.11	22.70	Residual Rock - Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix with relic bedding	
	100		_			44.01	(0.70)	Weathered Rock - Recovered as medium strong laminated grey fine grained LIMESTONE distinctly weathered	
4.50	53					70.01	(1.50)	Residual Rock - Recovered as angular cobbles and boulders in a brown sandy CLAY matrix with relic bedding	
6.00	100		_			41.81	26.00	Residual Rock - Recovered as light brown with grey/black mottling CLAY with occasional lenses of Sand	
7.50			-			40.31		Weathered Rock - Recovered as angular cobbles of Limestone in a brown sandy Clay matrix	
	56					38.81	(1.50)		
9.00	80	43	43			38.81		Medium strong to strong laminated grey fine grained LIMESTONE partially to distinctly weatheredwith clay seams	
emarks					l		<u> </u>	Scale (approx)	Logge
								1:50	S Kea

GROUND INVESTIGATIONS IRELAND		Grou	nd In		igations Ire vw.gii.ie	land	Ltd	Site Additional Airfield Boreholes	Borehole Number BH06
Flush : P	44 olymer		10	2mm cas	ed to 3.60m sed to 27.50m ed to 38.00m		Level (mOD) 67.81	Client DAA	Job Number 7687-04-18
Core Dia: 1 Method : G R		& HQ	Locatio 31		244020.6 N		3/05/2018- /06/2018	Engineer Balfour Beatty	Sheet 4/4
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
30.50				7			(2.50)	The sequence contains two sets of fractures F(1) are closely spaced, dipping between 10-20 degrees, planar to stepped rough with Clay smearing. F(2) are closely spaced, dipping between 70-90 degrees, planar to stepped rough with some Clay infilling	
31.50	93	59	50		_	36.31	31.50	Medium strong to strong laminated grey fine grained LIMESTONE partially to distinctly weatheredwith clay seams	
32.00	73	73	39	_					
33.50	83	50	20					The sequence contains two sets of fractures F(1) are closely spaced, dipping between 10-20 degrees, planar to stepped rough with Clay smearing. F(2) are closely spaced, dipping between 60-80 degrees, undulating to stepped rough with some surface staining and clay infilling	
35.00	80	40	55					Zones of non-intact between 32.0m to 32.05m BGL and 35.90m and 36.60m BGL	
36.50	22	20	20						
38.00						29.81		Complete at 38.00m	
Remarks							- - -	Scale (approx)	Logged By
								1:50 Figure 7687-0	S Kealy No. 14-18.BH06

APPENDIX 2

NEW AIR TRAFFIC CONTROL TOWER BOREHOLE LOGS WITH LOCATION PLAN

Glo	over S	Site I	nve	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreh Numb BH(
Boring Met Shell & Auge Rotary Corir			g Diamete 200mm ca	er sed to 5.13m		Level (mOD) 65.11	Client Irish Aviation Authority	Job Numb 09-01
		Locat		9 E 243478.653 N	Dates 03	3/03/2009	Engineer Arup Consulting Engineers	Sheet 1/3
Depth (m)	Sample / Te	ests Casin Depti (m)	g Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.50 1.00 1.00-1.45 1.50 2.00 2.00-2.45 2.00 3.00-3.45 3.00 3.00-3.45 3.00 4.00 4.00 4.50		50 50 50 50 57	FI 10	12 blows 4,5/6,7,6,7 5,7/9,11,11,13 7,7/6,9,9,9 Water Strike(1) at 5,00m, rose to 4,22m in 20 mins. 25,0/50 03/03/2009:	64.81 64.21 61.61 60.11 59.31	(0.30) 0.30 (0.60) 0.90 (2.60)	TOPSOIL Firm brown gravelly sandy CLAY with occasional thin seams of fine sand. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse. Gravel is subrounded to subangular fine to coarse. Cavel is subrounded to subangular fine to coarse. Cobbles are subrounded to subangular fine to coarse. Gravel is subrounded to subangular fine to coarse. Gravel is subrounded to subangular fine to coarse. Cobbles and boulder content. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse. Cobbles and boulders are subrounded to subangular Strong grey fine grained LIMESTONE Moderately strong to strong grey to dark grey fine grained for sub-vertical, planar rough to rough undulating, very open staining to occasional calcit vers. Silghtly to moderately open to very open, clean to orange brown staining to occasional calcy infill	
60	100 10	00 88	8		57.11	8.00	6.80m - 6.90m: clay infilled discontinuities with aperture 10-20mm	
temarks hiselling from	π 5.00m to 5.10		5.		57.11	<u> </u>	Scal (appro	e Logged By
							1:40	
							Figu	e No.

Glo	ver	Sit	e Ir	ve	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Borehol Number BH01
	omacchio 4 ir/Mist	405	-	Diamete 0mm cas	r ed to 5.13m	1	Level (mOD) 65.11	Client Irish Aviation Authority	Job Number 09-0108
Core Dia:		_	Locatio	n		Dates		Engineer	Sheet
Method : Si C	ymmetrix & oring	Rotary	31	5412.139	E 243478.653 N	03	/03/2009	Arup Consulting Engineers	2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
								Moderately strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veins.	
3.20 3.30				NI			• L • L	Slightly to moderately weathered	
	100	86	64				Ē	Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 20 degrees, planar smooth to rough,	
	-							moderately open to very open, clean to orange brown staining to occasional clay infill	
.90							È_	Discontinuity Set 2: widely spaced, dipping 75 degrees to	
							E	sub-vertical, planar rough to rough undulating, very open to extremely open, clean to clay infill	
				6			È		
1 1							È		
	100	100	100				Ē		
							È		
1. A.							Ē	10.15m - 10.45m: calcite infilled discontinuity with 5-8mm aperture	
							Ē		<u><u><u></u></u></u>
0.45							E		
	100	100	100	7					异中
0.90		_		_			Ē		日日日
									日日日
	100	100	100	7	10 I I I I			11.45m - 11.60m: calcite infilled discontinuity with	
							-	5-10mm aperture	王王
			Ĺ						日日
2.00							(8.00)		五王
							-		封井
							-		田田
	100	100	100	7			Ē		井井
						1.11	E		
_							-	13.25m - 13.55m: calcite infilled discontinuity with 8-12mm aperture	
3.50							-		
3.55	100	100	100	5			-		
3.75				16					
4.00				NI			-	13.95m - 14.36m: zone of weathered limestone with clay. Limestone is strongly discoloured to brown and	
								grey brown, weak to medium strong, becoming very closely spaced	
4.36 4.52	88	69	35	6 NI			-		
4.56				1.31			-		
				10					
5.05							-		
5.25				NI					
5.35									
				8					
	85	64	45			10.17	E to co		
Remarks				1		49.11	<u> </u>	Scale (approx)	Logged
								1:40	
									DC/HH
								Figure N 09-01	10. 05.BH01

Glo	ver	Sit	e Ir	ve	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreh Numb BH0
lush : Ai	omacchio 4 ir/Mist	105		Diameter Omm cas	r ed to 5.13m		Level (mOD) 65.11	Client Irish Aviation Authority	Job Numb 09-01
Core Dia: lethod : Si C	ymmetrix & oring	Rotary	Locatio 31		E 243478.653 N	Dates 03	/03/2009	Engineer Arup Consulting Engineers	Sheet 3/3
Depth (m)	TCR	SCR	RQD	Fi	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
6.11				NI			htstatete	Moderately strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veins. Slightly to moderately weathered	
6.55	100	100	94				hinter	Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 20 degrees, planar smooth to rough, moderately open to very open, clean to orange brown staining to occasional clay infill	
7.05	100	100	79	5				Discontinuity Set 2: widely spaced, dipping 75 degrees to sub-vertical, planar rough to rough undulating, very open to extremely open, clean to clay infill	
7.85		5					(4.20)	16.11m - 16.55m: zone of weathered limestone with occasional clay. Limestone is discoloured to dark grey brown and medium strong	
Ċ,	100	100	97	6					
9.40							hhili		
9.79 9.80	100	99	88	5 NI 5			L		
-20						44.91	20.20	Complete at 20.20m	
				.Le			-		
	2								
emarks		~					-		
								Scale (approx)	
								1:40 Figure I	DC/HH

Boring Meti Shell & Auge Rotary Corir	hodi er to 4.00mr	1	Casing	Diamete	stigatic r eed to 4.00m	Ground	Level (mOD) 64.59	Client Irish Aviation Authority	Job Numbe 09-010
			Locatio 31		9 E 243479.445 N		/03/2009- /03/2009	Engineer Arup Consulting Engineers	Sheet 1/3
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.50 0.50 1.00-1.45 1.00	ES1 D1 ES2 SPT N= B1 ES2 D2	9			2,2/3,2,2,2	64.49 64.19	(0.10) 0.10 (0.30) 0.40 0.40 (1.60)	BITMAC HARDCORE Soft to firm brown gravelly sandy CLAY. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse	
2.00 2.00-2.45 2.50	B2 SPT N= D3	24			4,5/5,6,7,6	62.59	2.00 (0.90)	Stiff brown gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse. Cobbles are subangular to subrounded	× 0 · · · · · · · · · · · · · · · · · ·
.00 .00-3.45 .50	B3 SPT N= D4	44			7,7/10,10,11,13	61.69	(1.00)	Very stiff dark brown gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse. Cobbles are subrounded to subangular	× 0 · · · × 0 × · · · · · · · · · · · · · · · · · · ·
.00 .00-4.15	D5 SPT 25 ⁷ 50/90	%60			Water Strike(1) at 3.90m, rose to 3.50m in 20 mins. 04/03/2009: 25,0/50	60.69	3.90	Strong dark grey fine grained CARBONIFEROUS LIMESTONE 5.50m - 6.00m: zone of weathered limestone with bands of clay. Limestone is strongly discoloured to brown and grey brown, medium strong	
.50	TCR	SCR	RQD	FI					
50	91	45	45	NI 8		58.59	6.00	Medium strong to strong layered light grey to grey to pale grey brown fine grained LIMESTONE with occasional calcite veining. Moderately weathered	
60 70 80 90	100	78	64	NI 20 NI 8			(2.95)	Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 20 degrees, planar smooth to rough undulating, open to very open, clean to brown staining and clay infill Discontinuity Set 2: close to widely spaced, dipping 70 degrees to sub-vertical, planar smooth to rough undulating,	
50 30 -	100	100	81	9			(2:00)	open to very open, clean to clay infill to calcite infill to occasional orange brown staining 8.30m - 8.70m: zone of doloritization of the limestone	
	100	100	100	6				giving a light grey and brown grey discolouration	
90 10 50	100	93	86	<u>NI</u> 9		55.64	8.95 - - (1.05) - 10.00 -	Medium strong to strong layered grey to dark grey and black fine grained fossiliferous LIMESTONE with occasional calcite veins. Slightly weathered (Full description as Sheet 2) 9.90m - 10.00m; calcite infilled discontinuity with a 8-12mm aperture	
emarks andpipe ins hiselling from	talled to 6. m 3.90m to	00m and 4.00m fo	12.00m. r 1 hour.			04:08 F	- 10.00 F	Scale (approx)	Logged By
								1:50	DC/HH

		_	C II	IVC	stigatio	115	Llu	New Air Traffic Control Tower, Dublin Airport	BH02
	omacchio 4 ir/Mist	405	-	Diamete D0mm cas	r ed to 4.00m		Level (mOD) 64.59	Client Irish Aviation Authority	Job Number 09-010
Core Dia : Method : Sy Co	ymmetrix & oring	Rotary	Locatio 31) E 243479.445 N		/03/2009- /03/2009	Engineer Arup Consulting Engineers	Sheet 2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.30			Collics					Moderately strong to strong layered grey to dark grey and black fine grained fossiliferous LIMESTONE with occasional calcite veins. Slightly weathered	
	100	95	86	9				Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 30 degrees, planar smooth to rough undulating, moderately open to very open, clean to brown staining to clay and calcite infill	
1.09 1.14 1.30	100	100	07	-Bi				Discontinuity Set 2: medium to widely spaced, dipping 70-85 degrees, planar smooth to smooth undulating, moderately open to very open, clean to brown staining to	
1.80 1.86 1.90	100	100	97	8 				calcite infill	
	100	97	95	9				11.30m - 13.50m: less fossiliferous	
.30 -	100	100	85	8			(6.50)		
.35 .40	100	100	90						
.90 -	100	100	76	10					
.50 .55 .58				NI		48.09	16.50 -	Moderately strong to strong layered grey to dark grey fine grained slightly fossiliferous LIMESTONE with very occasional calcite veins. Slightly to moderately weathered	
41 46	100	95	73	14 NI			(3.50)	Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 20 degrees, planar smooth to rough, occasionally rough undulating, moderately open to very open, clean to clay infill to calcite infill	
10				12			(3.50)	Discontinuity Set 2: close to widely spaced, dipping 60 degrees to sub-vertical, planar rough to rough undulating, occasionally stepped, moderately open to very open, clean to clay infill to calcite infill	
29 43 48 98	100	71	53	M NI			(16.70m - 16.90m: many calcite veins, limestone becoming very closely to closely spaced 17.20m - 19.60m & 20.29m - 20.77m: zones of	
18 28 42 60				20 NI				weathered limestone with occasional clay infilling discontinuities. Limestone is discoloured along discontinuities with more irregular fracture state	
marks				14		44.59	20.00	Scale (approx)	Logged
								1:50	DC/HH

GIC Machine : C	_				stigatio			Site New Air Traffic Control Tower, Dublin Airport		Boreho Number BH02
Flush : A	.ir/Mist	400		Diamete Omm cas	r ed to 4.00m		L evel (mOD) 64.59	Client Irish Aviation Authority		Job Number 09-010
Core Dia: Method : S	symmetrix 8 Coring	& Rotary	Locatio 31		E 243479.445 N	Dates 04 20	/03/2009- /03/2009	Engineer Arup Consulting Engineers		Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
20.29 20.54 20.72	75	58	37	<u>NI</u> 17 NI	2		(1.10)	LIMESTONE (Full description as Sheet 2)		
21.10								Complete at 21.10m		
Remarks						. F	-		Scale (approx) 1:50	Logged By DC/HH

Glo	ver	Sit	e Ir	ives	stigatio	ons	Lta	New Air Traffic Control Tower, Dublin Airport		BH(
Boring Meth Symmetrix D Rotary Corin	rilling to 7.0		Casing	Diameter			Level (mOD) 34.96	Client Irish Aviation Authority		Job Numb 09-01
, ,			Locatio				/03/2009-	Engineer		Sheet
Dopth					E 243464.265 N		03/2009	Arup Consulting Engineers		1/3
Depth (m)	Sample /	Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend
						64.76	(0.20) 0.20			
						64.56	- (0.20) - 0.40	MADE GROUND: Hardcore Stiff brown sandy gravelly CLAY with low cobble at	nd	×::
							E	Stiff brown sandy gravelly CLAY with low cobble an boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles	and	X NO
							(1.00)	boulders are subangular to subrounded		
							Ē			× ····
						63.56	1.40	BOULDER		O C
							(0.50)			00
						63.06	1.90	Stiff brown sandy gravelly CLAY with low cobble co		×
							Ē	Sand is fine to coarse. Gravel is subangular to sub fine to coarse. Cobbles are subangular to subroun	brounded	×
								into to coarse. Couples are subangular to subfoun	lued	× 0 · · · × 0
										x <u>x</u>
				-						×
							È '			× • •
							Ē			× ×
							(3.50)			×. •
							-			×
										ו
							(3.50)			× • • •
										<u> </u>
				1.20			Ē			× <u>°</u> ×°
1										× • • •
						59.56	5.40	and the second		× ×
							-	Stiff dark brown sandy gravelly CLAY with low cobb boulders content. Sand is fine to coarse. Gravel is	3	Č.
							(1.10)	subangular to subrounded fine to coarse. Cobbles boulders are subangular to subrounded	and	× 79.0
							(1.10)			
										ו Q•
						58.46	6.50	Weathered LIMESTONE	_	<u> </u>
	TCR	SCR	RQD	FI			(0.50)			
				NI		57.96	7.00	Medium strong grey to dark grey fine grained fossil	iferous	111
.	73	7	0	20			-	LIMESTONE with occasional calcite veins and ban clay. Moderately to highly weathered	ds of	그라
4			U	NI			E I	Discontinuity Set 1: close to medium spaced, dippi sub-horizontal to 30 degrees, planar smooth to roug	gh	
5				9				undulating, open to extremely open, clean to brown to clav infill	n staining	井井
,				9 NI			-	Discontinuity Set 2: medium to widely spaced, dipp degrees to sub-vertical, planar smooth to rough und	dulating,	
				10 NI				open to extremely open, clean to clay infill to calcite	e infill	
5	89	73	59				(3.00)			
				11				7.90m - 7.95m: zone of discolouration to grey bro	own	
				MI			-	penetrating in from discontinuity 8.35m - 8.55m, 9.50m - 9.75m: calcite discontinui	ities	
5				<u>NI</u>			-	with 10-20mm apertures 8.55m - 8.70m: zone of highly weathered limesto	ne.	
				7			-	Limestone is weak to medium strong, discoloured brown, very closely spaced	grey	
0			-	286 NJ				9.85m - 9.95m: bands of stiff clay with highly weathered limestone		
emarks	ned 30 degr	ees from	1 vertical			54,96	- 10.00		, Scale ,	Logge
					rom vertical.				(approx)	By

Glo	over	Sit	e Ir	ive	stigatio	ons	Ltd	New Air Traffic Control Tower, Dublin Airport	Number BH03
lush : A	Comacchio 4 Air/Mist	405	Casing	Diamete	r		Level (mOD) 64.96	Client Irish Aviation Authority	Job Numbe 09-010
	Symmetrix & Coring	Rotary	Locatio 31		E 243464.265 N	Dates 20/03/2009- 25/03/2009		Engineer Arup Consulting Engineers	Sheet 2/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.95 0.03 0.16 0.45 0.59	100	72	47	NI 10 NI 13				Medium strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veins and bands of clay. Moderately to highly weathered Discontinuity Set 1: close to medium spaced, dipping	
0.75 1.09 1.14 1.35	83	60	48	12 NI				sub-horizontal to 30 degrees, planar smooth to rough undulating, open to extremely open, clean to brown staining to clay infill Discontinuity Set 2: medium to widely spaced, dipping 70 degrees to sub-vertical, planar smooth to rough undulating, open to extremely open, clean to clay infill to calcite infill	
1.64 2.00 2.25				11 NI			(4.00)	10.03m - 10.16m, 10.25m - 10.35m, 11.35m - 11.64m, 12.70m - 12.90m: bands of stiff clay with highly	
2.90 3.10 3.20	90	40	22	NI 10 NI 13				weathered limestone 10.16m - 10.25m, 10.45m - 10.59m, 11.95m - 12.00m, 13.10m - 14.00m: zone of highly weathered limestone. Limestone is weak to medium strong, discoloured brown to grey brown, very closely spaced	
3.60 3.75 4.00	100	83	78	NI NI 6		50.96	14.00	Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining. Slightly weathered Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 30 degrees, planar smooth to rough, occasionally rough undulating, moderately open to very open, clean to brown staining to occasional calcite infill to	
5.25	100	100	98	5				occasional clay infill Discontinuity Set 2: widely spaced, dipping 50-70 degrees, planar smooth to rough undulating, moderately open to very open, clean to orange brown staining to occasional clay infil	
5.75	100	100	84	9			(6.00)		
9.25									
	93	93	85	6	1 - 1 				
9.65 9.75		-		NI	6	44.96	20.00		
lemarks					0		20.00 F	Scale (approx)	Logged By
								1:50	DC/HH

Glo	ver	Sit	e Ir	ive	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreho Numbe BH0	
Machine : C Flush : A		105	Casing	Diamete	r		Level (mOD) 64.96	Client Irish Aviation Authority	Job Numbe 09-010	
Core Dia: Method : S C	ymmetrix & oring	Rotary	Location 315424.656 E 243464.265 N				/03/2009- /03/2009	Engineer Arup Consulting Engineers	Sheet 3/3	
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
21.25 22.11 22.52 22.56 22.75 24.05 24.05 24.09 24.25 7.5 7.18 7.25 7.80	100 96 100 70 95 100	100 89 99 70 95 100	89 89 99 64 90 82	7 5 NI 5 NI 3 3 5 6 8		37.16		Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining. Slightly weathered Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 30 degrees, planar smooth to rough, occasionally rough undulating, moderately open to very open, clean to brown staining to occasional calcite infill to occasional clay infill Discontinuity Set 2: widely spaced, dipping 50-70 degrees. planar smooth to rough undulating, moderately open to very open, clean to orange brown staining to occasional clay infill 22.25m - 23.05m: zone of moderately weathered limestone. Limestone is discoloured orange brown in areas with discolouration penetrating in from the discontinuities. Discontinuities more irregular in state 24.10m - 24.60m: zone of slightly dolomitization 24.90m - 27.80m: slightly less fossiliferous		
Remarks								Scale (approx)	Logged By	
								(
								1:50	DC/HH	

Glo	over	Sit	e Ir	ve	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreho Numbe BH04
/lachine : C Tush : A Core Dia: 1		405	1	Diameter 25mm cas	r ed to 8.00m		Level (mOD) 64.86	Client Irish Aviation Authority	Job Numbe 09-010
	Symmetrix /	Coring	Locatio 31		E 243478.271 N	Dates 26/05/2009- 27/05/2009		Engineer Arup Consulting Engineers	Sheet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						0455	(0.30)	TARMAC	
			Ŀ.,			64.55	0.30	MADE GROUND: Firm brown sandy gravelly CLAY with low cobble and boulder content and pieces of fill.	
						64.16		Firm brown sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded.	
							(6.80)		
						57.36	7.50	Weathered LIMESTONE	
00 06				N7		56.86	8.00	Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining.	
17 55 58	97	88	67	11 NI 3			(1.92)	Slightly to moderately weathered. Discontinuity Set 1: close to widely spaced, dipping subhorizontal to 30 degrees, rough planar to rough undulating, moderately open to very open, clean to brown staining.	
46 50 38 30	100	60	43	NI NI NI 10		54.93	9.92	8.06-8.17m Highly weathered limestone showing a brown discolouration and becoming weak to very weak.	
emarks	t to 1.20m.		t	10		04.93	9.92	Scale	Logged k) By
-9 64								(appro: 1:50	RM
									e No.

Glo	ver	Sit	e Ir	ive	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Borehol Number BH04
Machine : Co Flush : Ai Core Dia: 10	r / Water	405		Diamete 5mm cas	r ed to 8.00m		Level (mOD) 64.86	Client Irish Aviation Authority	Job Number 09-010
Wiethod : Sy		Coring	Locatio 31		E 243478.271 N		/05/2009- /05/2009	Engineer Arup Consulting Engineers	Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level Depth (mOD) (m) (Thickness)		Description	Legend
0.10 0.20	75	75	45	NI			- televised	Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining. Slightly weathered.	
	100	100	92	6				Discontinuity Set 1: close to widely spaced, dipping subhorizontal to 30 degrees, smooth planar to rough undulating, tight to open, clean to black carbonate infill. Discontinuities at 11.40, 14.15, 14.90, 15.49, 15.68, 15.75, 16.90-17.00, have a brown discolouration which occasionally penetrates into the surrounding limestone. The limestone appears weak, showing increased weathering.	
11.60	99	99	99	3			ana ana la ana da	infectorie appears weak, showing increased weaking.	
13.08 13.10		<u></u>		NI					
	97	97	92	6			(7.98)		
4.60 4.65 4.72	95	95	94	NI 6					
6.05	100	100	80						
6.35	100	100	86	6					
7.90 8.02 8.07	91	86	75	NI		46.96	17.90	Medium strong to strong grey to dark grey and black fine to medium grained fossiliferous LIMESTONE. Slightly weathered.	
9.00				7			(1.85)	Discontinuity Set 1: close to widely spaced, dipping subhorizontal to 30 degrees, smooth planar to rough undulating, tight to open, clean to black carbonate rich infill. 18.02-18.07 Highly weathered limestone recovered as dark grey very weak to weak limestone with very closely spaced	
9.65 9.75	100	100	85	NI		45.11	19.75	discontinuities.	
Remarks							<u> </u>	Complete at 19.75m	Logaed
								Scale (approx)	
								1:50 Figure	RM No.

Glo	ver Sit	e In	ve	stigatio	ons I	_td	Site New Air Traffic Control Tower, Dublin Airport	Boreho Number BH05	
Boring Meth Symmetrix D Rotary Corin	rilling to 11.20m g to 20.55m		Diamete i 5mm case	r ed to 11.20m		evel (mOD) 4.92	Client Irish Aviation Authority	Job Number 09-010	
		Locatio 31		E 243471.877 N	Dates 28/0	05/200 9	Engineer Arup Consulting Engineers	Sheet 1/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
					(0.30)	 (0.30) 0.30	TARMAC		
					64.12	- (0.50) - 0.80	MADE GROUND: Firm brown sandy gravelly CLAY with low cobble and boulder content and pieces of fill. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded		
							Firm brown sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded		
						- 1			
14				Seepage(1) at 7.50m.				0 10 10 10 10 10 10 10 10 10 10 10 10 10	
					54.92	- 10.00 -		× 0 × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 = × 0 = 0 0 = 0 0 0	
emarks and dug pit	excavated to 1.20m		1		04.921	- 10.00 F	Scale (approx	Logged By	
							1:50	RM/HH	

Glo	over	Sit	e Ir	ves	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreho Numbe BH0
Boring Met Symmetrix I Rotary Corir	hod Drilling to 11 ng to 20.55n	.20m n	-	Diameter 5mm case	ed to 11.20m		Level (mOD) 64.92	Client Irish Aviation Authority	Job Numbe 09-010
			Locatio 31		E 243471.877 N	Dates 28/05/2009		Engineer Arup Consulting Engineers	Sheet 2/3
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						5440	(0.80)	Firm brown sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded	
	TCR	SCR	RQD	FI		54.12	(0.40)	Weathered LIMESTONE	
11.20	100	95	46	9		53.72		Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining and bands of dark grey to black shale. Slightly to moderately weathered Discontinuity Set 1: close to widely spaced, dipping	
12.00 12.05 12.20 12.23 12.43 12.57	81	28	0	NI 14 NI			առեսու	sub-horizontal to 30 degrees, smooth planar to rough undulating, moderately open to open, clean to brown staining to clay infill Discontinuity Set 2: extremely widely spaced, dipping 80 degrees to sub-vertical smooth planar to rough undulating, moderately open to very open, clean	
12.95 13.00 13.40	100	100	100	2					
4.12 4.18 4.43	84	75	69	6 <u>NI</u> 4 NI			ռուժումներուժորհերհերհերհերհերհեր		
4.70	100	97	86	5			-	12.57m - 12.95m and 17.25m - 17.35m; bands of clay	
15.57 15.60 15.66	100	93	86	NI 5			(8.80)		
16.50 16.58	100	84	76	NI 4					
7.35 7.60 7.90 8.07 8.30	97	97	59	5 NI 22			laandaaa		
	100	100	100	6					
9.20	94	94	69	10				*	
Remarks						44.92	20.00	Scale (approx)	Logged By
								1:50	RM/HH
								Figure	No. 105.BH05

Ore Dat: 100 Componential & Rohm Location Instance Detects Instance Instance In	Glo	ver	Sit	e In	ive	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Bore Num BH	
endo: Coston Description Angeneric Status Status <ths< th=""><th>Flush : Ai</th><th>r/Water</th><th>405</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Num</th><th>nber</th></ths<>	Flush : Ai	r/Water	405							Num	nber
Jame Image: State St	Method : Sy	/mmetrix &	Rotary			E 243471.877 N	Dates 28	/05/2009	•		
emarks Scale by by description of the second	Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	Mater M
remarks Scale (approx) By	20.55								and bands of dark grey to black shale. Slightly to moderately weathered Discontinuity Set 1: close to widely spaced, dipping sub-horizontal to 30 degrees, smooth planar to rough undulating, moderately open to open, clean to brown staining to clay infill Discontinuity Set 2: extremely widely spaced, dipping 80 degrees to sub-vertical smooth planar to rough undulating, moderately open to very open, clean		HHHH
1:50 RM/HH	Remarks								Scale (approx) Logg By	jed
Figure No.											нн

Barring Municity Obsing Denotes Obsindenotes Obsing Denotes Obsing		Sit		_	stigatio	1		Site New Air Traffic Control Tower, Dublin Airport	Boreho Numbe BH0
Depinit Sample / Tests Specified (R) Vertex (R) Field Records (R) Oppinit (R) Conclusing Engineers Depinit Sample / Tests Specified (R) Paid Records (R) (R) Oppinit (R) Description Description Image: Sample / Tests Specified (R) Finite Acade (R) (R) Specified (R) Finite Acade (R) (R) Oppinite (R) Concern: Second and Description Concern: Second and Description Image: Sample / Tests Image: Sample / Tests Image: Sample / Tests (R) Sample / Tests (R) Oppinite (R) Concern: Second and Description Concern: Sample / Tests Image: Sample / Tests		2.60m)m							Job Numbe 09-010
04.88 0.20 0.40 CONCRETE 04.86 0.81 0.46 04.86 0.81 0.46 04.86 0.81 0.91 1 0.46 0 0.91 1 0.91 0 0.91 1 0.91 0 0.91 1 </th <th>12</th> <th></th> <th></th> <th></th> <th>3 E 243469.875 N</th> <th>29</th> <th>0/05/2009 0/05/2009</th> <th></th> <th>Sheet 1/3</th>	12				3 E 243469.875 N	29	0/05/2009 0/05/2009		Sheet 1/3
64.46 0.46 (0.46) (0.47) 64.46 0.46 (0.47) (0.47) 64.46 0.60 (0.47) (0.47) (0.	epth m) Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
Seepage(1) at 2.00m. (1.70) Seepage(1) at 2.00m. (1.70) (1.70) Seepage(1) at 5.00 - 10.00 (1.70) Seepage(1) at 5.00 - 10.00							(0.40)	MADE GROUND: Firm brown sandy gravelly CLAY with low cobble and boulder content and pieces of fill. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded	
56.76 8.30 Very stiff black sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded								subangular to subrounded fine to coarse. Cobbles and	
Inmarka					Seepage(1) at 8.00m.	56.76		Very stiff black sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded	
and dug pit excavated to 1.20m.	arks					55.06	10.00		
	dug pit excavated	d to 1.20m.	5.					Scale (approx) Logge By
1:50 Figure No.								the second se	RM/HH/

Glo	ver	Sit	e Ir	ives	stigatio	ons	Ltd	Site New Air Traffic Control Tower, Dublin Airport	Boreho Number BH06
Boring Meth Symmetrix D Rotary Corin	Drilling to 12		-	Diameter 5mm case	r ed to 12.60m		Level (mOD) 65.06	Client Irish Aviation Authority	Job Number 09-010
			Locatio 31		E 243469-875 N		/05/2009- /05/2009	Engineer Arup Consulting Engineers	Sheet 2/3
Depth (m)	Sample	/ Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
						52.86	(2.20)	Very stiff black sandy gravelly CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Cobbles and boulders are subangular to subrounded	
	TCR	SCR	RQD	FI		52.46	(0.40) 12.60	Weathered LIMESTONE	井井
2.60 2.78 2.84			5	6 Nt				Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining and bands of dark grey to black shale. Slightly weathered	
	100	96	96	6				Discontinuity Set 1: close to widely spaced, dipping sub-horizontal to 30 degrees, smooth planar to rough undulating, moderately open to very open, clean to occasional clay infill	
								Discontinuity Set 2: extremely widely spaced, dipping 80 degrees to sub-vertical, smooth planar to rough undulating,	井井
L.10								moderately open to very open, clean	
	100			96	6 5			(5.15)	
5.60	100			94	6				
7.20									
.20			-						
	97	97	57	12		47.31 47.06	17.75 (0.25) 18.00	Medium weak to medium strong grey to dark grey and black fine grained SHALE. Slightly to moderately weathered Discontinuity Set 1: very closely to closely spaced, dipping sub-horizontal to 10 degrees, smooth to rough planar, tight to open, clean to clay infill	
18.66 — 18.70				NI			(1.37)	Medium strong to strong grey to dark grey fine grained fossiliferous LIMESTONE with occasional calcite veining	
.70	100	100	88	4		45.69	19.37	and bands of dark grey to black shale. Slightly weathered Discontinuity Set 1: close to medium spaced, dipping sub-horizontal to 30 degrees, smooth planar to rough undulating, moderately open to very open, clean to occasional clay infil	
				6				Discontinuity Set 2: extremely widely spaced, dipping 80 degrees to sub-vertical, smooth planar to rough undulating, moderately open to very open, clean	
temarks								Scale (approx	Logger By
								1:50	RM/HH/D
								Figure	1

Machine : C		_	1	Diamete	stigatio			New Air Traffic Control Tower, Dublin Airport Client	Job Number
	ir/Water		12	25mm cas	sed to 12.60m	65.06		Irish Aviation Authority	
Core Dia: 10 Method : S C		& Rotary	Locatio 31		3 E 243469.875 N	Dates 29 30	/05/2009- /05/2009	Engineer Arup Consulting Engineers	Sheet 3/3
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
20.20						44.86	(0.83) 20.20	Medium strong to strong light grey to cream medium grained bioclastic LIMESTONE with occasional calcite velning. Slightly weathered	
				-				Discontinuity Set 1: close to widely spaced, dipping sub-horizontal to 30 degrees, rough planar to rough undulating, moderately open to very open, clean to clay infill Complete at 20.20m	
							L. L. L. L.		
a d				-					× III
							1. l. a. a. a.		
							•		
6							. l. l. d. d.		
							a la la faita la		
							1		
	T						<u> </u>		
i i i							. Anto ta la ta ta ta		
							- La la la la la		
Remarks								Scale (approx)	Logged By
								1:50	RM/HH/DC
								Figure	No. 105.BH06